

Résumé Semaine 8

États de surface Tolérancement dimensionnel l

Dr. S. Soubielle

S. Soubielle

Ligne moyenne

Résumé semaine 8

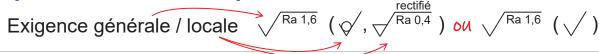
ME-101 / ME-106 - Construction Mécanique I

Longueur de mesure

États de surface

Paramètres normalisés

- Rugosité arithmétique Ra
- Classe de rugosité ISO
- Hauteur maximale de profil Rz



Rugosimètre (précis) ou rugotest (estimatif)

- Limitation due au procédé
 - Usinage → N6 / Ra 0,8 au mieux
 - Rectification → jusqu'à N3 / Ra 0,1

Spécifications sur le plan

Tolérancement dimensionnel l

Pièce réelle vs. pièce parfaite

Procédé de fabrication utilisé + valeur de la cote (si linéaire) + ...

- → Défauts dimensionnels (linéaires ou angulaires)
- → Plage d'incertitude sur la cote réelle exacte (vs. cote nominale)

Intervalle de tolérances

Spécifie les écarts limites admissibles ES et EI

- On en déduit L_{\min} et L_{\max} (ou $heta_{\min}$ et $heta_{\max}$) admissibles
- L'usineur adapte le procédé pour satisfaire la précision exigée

Tolérances générales selon ISO 2768-1

- Niveau de précision « standard », peu exigeant
- Permet d'omettre les valeurs explicites sur le plan

S. Soubielle 3

Résumé semaine 8

ME-101 / ME-106 — Construction Mécanique I

Quiz TurningPoint (me101)

Systèmes mécaniques l

Assemblage mécanique, Fonctions de service, Fonctions techniques

Dr. S. Soubielle

S. Soubielle

Systèmes mécaniques I

ME-101 / ME-106 - Construction Mécanique I

Dans ce cours, nous allons...

... Définir ce qu'est un système mécanique

... Et les documents nécessaire pour le construire (plan d'ensemble, nomenclature, et procédure de montage)

... Définir ce que sont les fonctions de service d'un système mécanique

- ... À quel(s) besoin(s) répond le système mécanique ?
- ... Quelles fonctions secondaires doivent être satisfaites?

... Définir ce que sont les fonctions techniques

- Découlant des fonctions de services
- ... Qui vont se traduire en conditions de fonctionnement à respecter

Système mécanique

C'est quoi un système mécanique ?

- Ensemble de pièces mécaniques liées entre elles...
- ... Par des procédés démontables (p.ex. vissage) ou indémontables (p.ex. soudage)...
- ... En vue de satisfaire une ou plusieurs fonctions de service.

Moteur à explosion Cox .049 Babe Bee ®

De quoi a-t-on besoin pour le construire ?

- L'intégralité des pièces constitutive de l'assemblage, y compris visserie, graisse, colle, etc.
- Les outils de montage (clés de serrage, etc.)
- Les informations relatives à l'assemblage

S. Soubielle 3

Systèmes mécaniques I

ME-101 / ME-106 - Construction Mécanique I

Plan d'ensemble

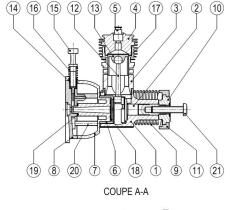
Représentation de l'assemblage mécanique

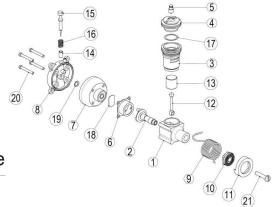
- En situation assemblée et/ou « éclatée »
- Vues extérieures et/ou en coupe
- Projections orthogonales et/ou axonométriques

A (4) (6) (5) (2) (3) (4) (7) (3) (2) (10) A (928,6) (99,6) (59,6) (59,6) (COUPE AA)

Infos complémentaires

- Numérotation des pièces
- Cotes d'encombrement (entre parenthèses) : L × H × P
- Cotes effectives de montage et/ou de réglage, le cas échéant
- Masse de l'ensemble


Vue en coupe ou vue éclatée ?


Vue d'ensemble en coupe

- Permet de visualiser l'organisation spatiale des pièces une fois montées
- Un motif de hachures différent pour chaque pièce
- Si pièce de révolution « pleine » dont axe passe par le plan de coupe
 - → non coupée dans la vue

Vue d'ensemble éclatée

- Permet de visualiser distinctement les pièces constituant l'assemblage
- Utilisé en complément des vues en projection orthogonale

S. Soubielle

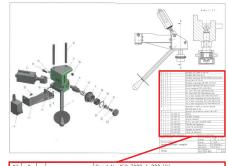
Systèmes mécaniques I

ME-101 / ME-106 - Construction Mécanique I

Nomenclature

C'est quoi?

Liste de toutes les pièces constitutives de l'assemblage


Données contenues

- Position de la pièce (= N° sur le plan d'ens.)
- Numéro d'identification (= numéro d'article)
- Dénomination / désignation
- Quantité (pour chaque référence d'article)

À quoi sert la nomenclature ?

- Logistique et gestion des stocks
- Vérification lors de la phase d'assemblage

Extrait de Normes 2022, pp. 558-559

23	2			Rondelle ISO 7089-6-200 HV
22	1			Rondelle DIN 7349-8-Ac
21	1			Rondelle élastique DIN EN 16983-A-8,2/16×0,9
20	1			Circlip DIN 472-35×1,5
19	3			Rondelle d'ajustage DIN 988-15/21×0,1
18	2			Goupille élastique ISO 8752-5×10-Ac
17	1			Ecrou hexagonal ISO 4032-M8-8
16	2			Vis sans tête ISO 4026-M6×8-45H
15	1			Vis sans tête ISO 4026-M8×40-45H
14	2			Vis à tête bombée ISO 14583-M6×10-8.8
13	2			Vis à tête cylindrique ISO 4762-M6×12-8.8
12	1			Vis à tête cylindrique ISO 4762-M8×20-8.8
11	11			Vis à tête hexagonale ISO 4017-M8×16-8.8
10	1			Roulement à billes à contact oblique
				DIN 628-3002 A-2Z
9	1			Bouchon de fermeture nature 38,4×12,5
8	2		40-520-114	Boulon
7	1		40-520-113	Cylindre à disque
6	1		40-520-112	Axe de calandre
5	1		40-520-111	Boîtier de levier pivotant usiné
4	1		40-520-005	Contrôle de l'épaisseur
3	1		40-520-004	Levier de surveillance
2	1		40-520-003	Agrégat de ressort
1	1		40-520-002	Levier de manœuvre
Pos.	Quantité	Unité	Numéro d'identification	Dénomination/caractéristiques

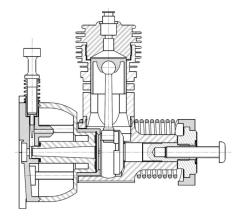
Procédure de montage

Pour quoi faire ?

- Document illustré
- Décrit les étapes successives de montage
- Détaille les pièces (et éventuellement les outils) nécessaires à chaque étape
- Document optionnel, mais recommandé pour les montages complexes et/ou destinés à être assemblés par du personnel peu qualifié

Extrait du manuel d'assemblage COX PT-19 / COX 5700 ®

S. Soubielle


Systèmes mécaniques I

ME-101 / ME-106 - Construction Mécanique I

Fonctions de Service (1/2)

Fonctions principales (FP)

 Fonctions pour lesquelles le système mécanique est conçu

Fonctions contraintes (FC)

= Fonctions rendues nécessaires à l'obtention de la FP

Fonctions de Service (2/2)

Formulation d'une Fonction de service (FS)

- Qualifier, par du texte
 - · Un verbe d'action
 - > transmettre, entraı̂ner, convoyer, guider, fournir, retenir, maintenir, isoler, évacuer, exercer, collecter, assurer, etc.
 - Des compléments
 - > le mouvement, la force, la poussée, le couple, la position, la pression, la chaleur, l'étanchéité, en translation, en rotation, etc.
- Quantifier, par des chiffres

Valeurs minimale, nominale, maximale, moyenne... de vitesse, force, couple, pression, température, distance, position, angle, etc.

Fonctions Techniques (FT) d'un système mécanique

- Fonctions internes définies au niveau d'un ensemble de pièces
- Se traduisent par des conditions de fonctionnement (CF)

S. Soubielle 9

Systèmes mécaniques I

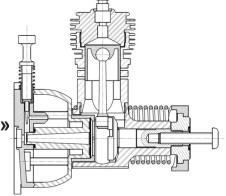
ME-101 / ME-106 - Construction Mécanique I

FT – Exemple du micro-moteur (1/5)

• Étape 0 – Identification des sous-ensembles mobiles

- Bloc-moteur
 - → Ensemble des pièces statiques qui jouent le rôle de châssis. Inclut le cylindre dans lequel a lieu la combustion
- Piston
 - → Pièce de révolution qui reçoit la force de pression due à la combustion et qui coulisse dans l'axe du cylindre
- Bielle -
 - → Tige qui relie le piston à l'arbre de sortie, et qui transmet la puissance mécanique

Arbre de sortie


→ Pièce de révolution qui tourne autour d'un axe fixe (par rapport au blocmoteur) et qui transmet la puissance mécanique à l'hélice

FT – Exemple du micro-moteur (2/5)

• Étape 1 : Fonctions techniques des sous-ensembles

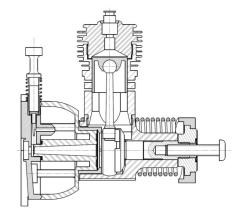
FC1 : « Résister à la chaleur [...] »

FC2 : « Réduire les pertes d'énergie [...] »

FC3: « Être le plus léger possible »

S. Soubielle 11

Systèmes mécaniques I


ME-101 / ME-106 - Construction Mécanique I

FT – Exemple du micro-moteur (3/5)

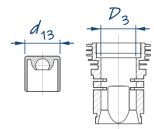
Étape 2 : FT et conditions fonctionnelles (1)

FT1.1 = « [...] résister à 600 °C dans la zone de combustion »

FT1.2 = « [...] favoriser l'évacuation de la chaleur »

FT3.2 = « [...] masse volumique la plus faible possible »

FT – Exemple du micro-moteur (4/5)


• Étape 2 : FT et conditions fonctionnelles (2)

FT2.1 = « Mouvement sans blocage »

> Pas d'interférence de matière entre pièces mobiles

Par exemple: interface piston (13) / cylindre (3)

 \rightarrow CF2.1: Il faut $d_{13} < D_3$

FT2.2 = « Mouvement le plus précis possible »

 \rightarrow CF2.2.1 : \mathcal{D}_3 - d_{13} doit être le + petit possible

FT2.4 = « [...] chambre de combustion hermétique [...] »

- → Absence de fuite entre le piston (13) et le cylindre (3)
- \rightarrow CF2.4.1: $D_3 d_{13}$ doit être le + petit possible

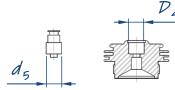
FT2.3 = « Minimiser les frottements »

 \rightarrow CF2.3 : Ra 0,8 / Rz 2,5 au max. (sur les surfaces concernées)

S. Soubielle 13

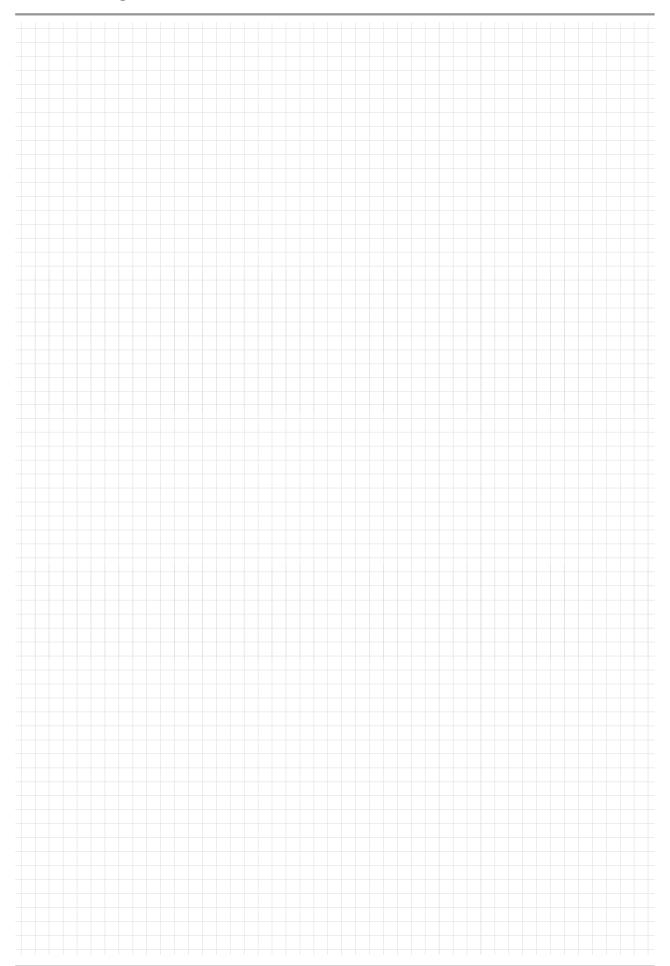
Systèmes mécaniques I

ME-101 / ME-106 - Construction Mécanique I


FT – Exemple du micro-moteur (5/5)

Étape 2 : FT et conditions fonctionnelles (3)

FT2.4 = « [...] chambre de combustion hermétique [...] »


Par exemple: interface bougie (5) / culasse (4):

Bougie « chassée » (= assemblée sous pression) dans la culasse

- → La bougie ne doit pas être éjectée lors du fonctionnement du moteur (chambre de combustion sous pression)
- \rightarrow Il faut $d_5 > D_4$

Notes personnelles

Tolérancement dimensionnel II

Ajustements et chaînes de cotes

Dr. S. Soubielle

S. Soubielle

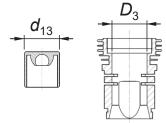
Tolérancement dimensionnel II

ME-101 / ME-106 - Construction Mécanique I

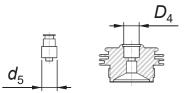
Dans ce cours, nous allons...

... Définir la notion d'ajustement d'assemblage

- ... Concept de jeu et de serrage
- ... Tolérances de fabrication et types d'ajustement
- ... Calcul des jeux minimum et maximum d'assemblage


... Définir la notion de chaîne de cotes

- ... Généralisation du concept d'ajustement
- ... Méthodologie de résolution


Retour sur le cours précédent

Conditions de fonctionnement pour le micro-moteur

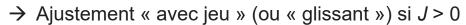
- Interface piston (13) / cylindre (3)
 - \rightarrow 5 < $D_3 d_{13}$ < 15-20 µm
 - → Guidage précis et étanche

- Interface bougie (5) / culasse (4)
 - \rightarrow 5 < $d_5 D_4$ < 15 µm
 - → Assemblé sous pression

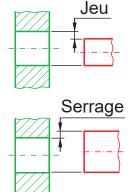
S. Soubielle 3

Tolérancement dimensionnel II

ME-101 / ME-106 - Construction Mécanique I

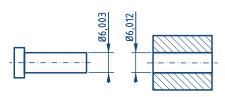

Ajustement d'assemblage

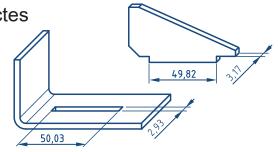
Définition du jeu d'assemblage J


J = D - d

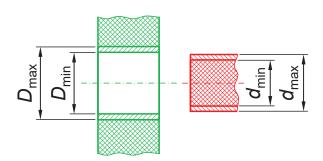
avec D: dim. intérieure (p. ex. Ø de l'alésage)

d : dim. extérieure (p. ex. Ø de l'arbre)




 \rightarrow Ajustement « avec serrage » (ou « serré ») si J < 0

(Cotes indiquées = dimensions exactes mesurées sur les pièces réelles)



Tolérances et ajustement (1/3)

Conception de produit et jeu d'assemblage

- Plans de fabrication → Intervalles de tolérances
 - → Impossible de prédire la valeur exacte de J
- Processus industriel d'assemblage
 - La machine doit fonctionner dans 100 % des cas
 - Rôle du concepteur = choisir les intervalles de tolérances qui garantissent les fonctions techniques
- Calcul de J_{max} et J_{min}
 - $J_{\text{max}} = D_{\text{max}} d_{\text{min}}$
 - = Situation au « mini. matière »
 - $J_{\min} = D_{\min} d_{\max}$
 - = Situation au « maxi. matière »

S. Soubielle 5

Tolérancement dimensionnel II

ME-101 / ME-106 - Construction Mécanique I

Tolérances et ajustement (2/3)

Trois types d'ajustement possibles

1. Ajustement avec jeu

Si J est toujours > 0,

$$\rightarrow$$
 Si $D_{\min} > d_{\max}$

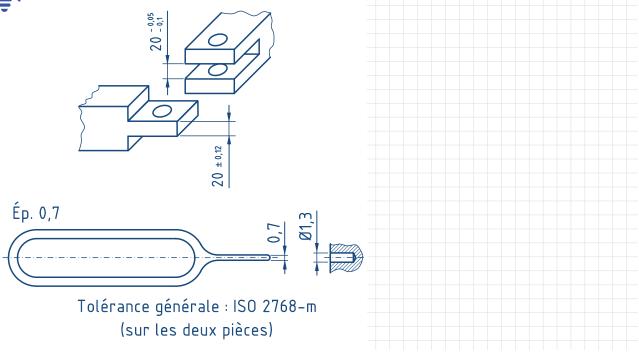
2. Ajustement serré

Si J est toujours < 0,


$$\rightarrow$$
 Si $D_{\text{max}} < d_{\text{min}}$

3. Ajustement incertain

Si J peut être ou > 0 ou < 0

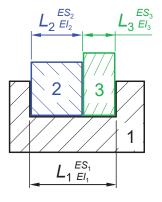

$$\rightarrow$$
 Si $D_{\min} < d_{\max}$

$$Et D_{max} > d_{min}$$

Tolérances et ajustement (3/3)

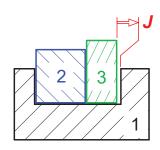
Exercice d'application : quel type d'ajustement ?

S. Soubielle


Tolérancement dimensionnel II

ME-101 / ME-106 - Construction Mécanique I

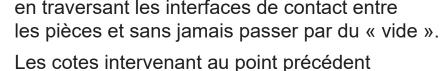
Chaîne de cotes (1/3)

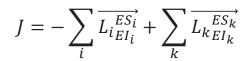

Définition

- Généralisation du concept d'ajustement pour un empilement de plus de 2 pièces
- Objectif = calcul du jeu min. et du jeu max.
- Calcul uniaxial (linéaire)

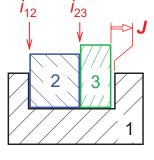
Méthodologie

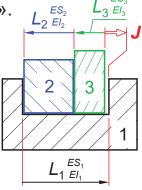
- Représenter l'empilement de pièces de manière à faire apparaître un jeu localisé à un seul endroit
- On matérialise le jeu par un vecteur J 2.




Chaîne de cotes (2/3)

Méthodologie (suite)


- 3. Identifier les interfaces de contact restantes entre les pièces de l'empilement
- 4. Tracer le chemin permettant, depuis la base de J et en partant dans la direction opposée à J, de rejoindre la pointe de J en traversant les interfaces de contact entre les pièces et sans jamais passer par du « vio

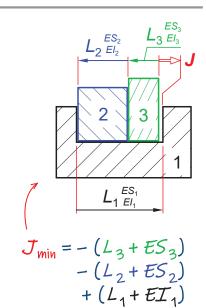

se transforment en vecteurs, et :

Avec indice « i » si direction opposée à J indice « k » si même direction que J

S. Soubielle 9

Tolérancement dimensionnel II

ME-101 / ME-106 - Construction Mécanique I


Chaîne de cotes (3/3)

Méthodologie (fin)

6. Calcul du jeu min. et du jeu max. :

$$J_{\min} = -\sum_{i} \left(L_{iEI_{i}}^{ES_{i}} \right)_{\max} + \sum_{j} \left(L_{kEI_{k}}^{ES_{k}} \right)_{\min}$$
$$= -\sum_{i} (L_{i} + ES_{i}) + \sum_{k} (L_{k} + EI_{k})$$

$$J_{\max} = -\sum_{i} \left(L_{iEI_{i}}^{ES_{i}} \right)_{\min} + \sum_{k} \left(L_{kEI_{k}}^{ES_{k}} \right)_{\max}$$
$$= -\sum_{i} (L_{i} + EI_{i}) + \sum_{k} (L_{k} + ES_{k})$$

$$J_{\text{max}} = -(L_3 + EI_3) - (L_2 + EI_2) + (L_1 + ES_1)$$

Références normatives principales

ISO 129-1	Documentation technique de produit – Représentation des dimensions et tolérances – Partie 1 : Principes généraux
ISO/DIS 129-2	Documentation technique de produit – Indication des cotes et tolérances – Partie 2: Cotation dans le domaine de la construction mécanique
ISO 2768-1	Tolérances générales – Partie 1: Tolérances pour dimensions linéaires et angulaires non affectées de tolérances individuelles
ISO 80000-3	Grandeurs et unités - Partie 3: Espace et temps

S. Soubielle

Tolérancement dimensionnel II

ME-101 / ME-106 — Construction Mécanique I

Notes personnelles

